Quasi-invariance for Heat Kernel Measures on Sub-riemannian Infinite-dimensional Heisenberg Groups
نویسندگان
چکیده
We study heat kernel measures on sub-Riemannian infinitedimensional Heisenberg-like Lie groups. In particular, we show that Cameron-Martin type quasi-invariance results hold in this subelliptic setting and give L-estimates for the Radon-Nikodym derivatives. The main ingredient in our proof is a generalized curvature-dimension estimate which holds on approximating finite-dimensional projection groups. Such estimates were first introduced by Baudoin and Garofalo in [4].
منابع مشابه
Heat kernel measures and Riemannian geometry on infinite-dimensional groups
I will describe a construction of heat kernel measures on GL(H), the group of invertible operators on a complex Hilbert space H. This measure is determined by an infinite dimensional Lie algebra g and a Hermitian inner product on it. The main tool in this construction is a diffusion in a Hilbert space ambient g. Then I’ll describe holomorphic functions and their properties. One of interesting n...
متن کاملSmoothness of Heat Kernel Measures on Infinite-dimensional Heisenberg-like Groups
We study measures associated to Brownian motions on infinitedimensional Heisenberg-like groups. In particular, we prove that the associated path space measure and heat kernel measure satisfy a strong definition of smoothness.
متن کاملLogarithmic Sobolev Inequalities for Infinite Dimensional Hörmander Type Generators on the Heisenberg Group
Abstract. The Heisenberg group is one of the simplest sub-Riemannian settings in which we can define non-elliptic Hörmander type generators. We can then consider coercive inequalities associated to such generators. We prove that a certain class of nontrivial Gibbs measures with quadratic interaction potential on an infinite product of Heisenberg groups satisfy logarithmic Sobolev inequalities.
متن کاملThe intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups
We present an invariant definition of the hypoelliptic Laplacian on sub-Riemannian structures with constant growth vector, using the Popp’s volume form introduced by Montgomery. This definition generalizes the one of the Laplace-Beltrami operator in Riemannian geometry. In the case of left-invariant problems on unimodular Lie groups we prove that it coincides with the usual sum of squares. We t...
متن کاملA Subelliptic Taylor Isomorphism on Infinite-dimensional Heisenberg Groups
Let G denote an infinite-dimensional Heisenberg-like group, which is a class of infinite-dimensional step 2 stratified Lie groups. We consider holomorphic functions on G that are square integrable with respect to a heat kernel measure which is formally subelliptic, in the sense that all appropriate finite dimensional projections are smooth measures. We prove a unitary equivalence between a subc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011